Suppose we have tro coondinate syttems, $X^{\prime \prime}$ and $X^{\prime \prime}$. We can dungethe basis in which the derinvalive is expressed as follows:

$$
\frac{\partial f}{\partial x^{\mu}}=\frac{\partial f}{\partial x^{\mu \prime}}, \frac{\partial x^{\mu \prime}}{\partial x^{\mu}} \Leftrightarrow \partial_{\mu}=\frac{\partial x^{\mu \prime}}{\partial x^{\mu}} \partial_{\mu \prime}
$$

We recal thet the coordivacke basis forthe loyent spare (He setofall directional beninaties at a poirl $p \in M)$ isgion by $\left\{\partial_{\mu}\right\}_{\mu}$, such Ind ang vector $V \in T_{p}$ canbe written as k pperator

$$
V=V^{\mu} \partial_{\mu}
$$

(recall int dirctiond derimbies nap fuections ovile navifold tokereals.)
If re clarge to the $X^{m \prime}$ coondindes, relare

$$
\begin{gathered}
V=V^{\mu} \partial_{\mu}=V^{\mu} \frac{\partial x^{\prime \prime}}{\partial x^{\prime \mu}} \partial_{\mu^{\prime}} \stackrel{!}{=} V^{\mu^{\prime}} \partial_{\mu^{\prime}} \Longleftrightarrow \\
V^{\mu^{\prime}}=\frac{\partial x^{\prime \prime}}{\partial x^{\mu}} V^{\mu}
\end{gathered}
$$

