Conservation of Probability Current

Matt Kafker

Exercise:

We demonstrate the conservation of probability current in quantum mechanics.

Solution:

The probability current is defined as

$$
J(x, t)=\frac{i \hbar}{2 m}\left(\frac{\partial \Psi^{*}}{\partial x} \Psi-\Psi^{*} \frac{\partial \Psi}{\partial x}\right)
$$

We consider the probability that a particle is found between a and b :

$$
P_{a b}=\int_{a}^{b}|\Psi|^{2} d x
$$

Then, this quantity changes in time as

$$
\begin{gathered}
\dot{P}_{a b}=\int_{a}^{b} \partial_{t}|\Psi|^{2} d x=\int_{a}^{b}\left(\dot{\Psi}^{*} \Psi+\Psi^{*} \dot{\Psi}\right) d x= \\
\int_{a}^{b} \frac{i}{\hbar}\left[\left(-\frac{\hbar^{2}}{2 m} \Psi_{x x}^{*} \Psi+V|\Psi|^{2}\right)-\left(-\frac{\hbar^{2}}{2 m} \Psi^{*} \Psi_{x x}+V|\Psi|^{2}\right)\right] d x= \\
\frac{i \hbar}{2 m} \int_{a}^{b}\left(\Psi^{*} \Psi_{x x}-\Psi_{x x}^{*} \Psi\right) d x=\left.\frac{i \hbar}{2 m}\left(\Psi^{*} \Psi_{x}-\Psi_{x}^{*} \Psi\right)\right|_{a} ^{b}= \\
-\left.J(x, t)\right|_{a} ^{b}=\left.J(x, t)\right|_{b} ^{a}=J(a, t)-J(b, t)
\end{gathered}
$$

Thus, in quantum mechanics, the change in probability in some region of space equals the net flux of probability current at the boundary.

