Exercise We do rive Cranmer's rule for solving lIno linear equations in two unknowns.
(Source: Boas, 3.3)
We consider a system of tho linear equations in two unknowns:

$$
\begin{aligned}
& a_{1} x+b_{1} y=c_{1} \\
& a_{2} x+b_{2} y=c_{2}
\end{aligned}
$$

We sole for x and y. First, ne multiply equation I by b_{2} and equation $2 b_{y} b_{1}$. Then, we have

$$
\begin{aligned}
& b_{2} a_{1} x+b_{2} b_{1} y=b_{2} c_{1} \\
& b_{1} a_{2} x+b_{1} b_{2} y=b_{1} c_{2} \\
& \left(a_{1} b_{2}-a_{2} b_{1}\right) x=c_{1} b_{2}-c_{2} b_{1} \Rightarrow \\
& x=\frac{c_{1} b_{2}-c_{2} b_{1}}{a_{1} b_{2}-a_{2} b_{1}}=\frac{\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}
\end{aligned}
$$

Similarly, if ie multiply equation I by a_{2} and equation

2 by a_{1}, veget

$$
\begin{aligned}
& a_{2} a_{1} x+a_{2} b_{1} y=a_{2} c_{1} \\
& a_{1} a_{2} x+a_{1} b_{2} y=a_{1} c_{2} \\
& \left(a_{1} b_{2}-a_{2} b_{1}\right) y=\frac{a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}=\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right| \\
& \left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|
\end{aligned}
$$

Thus, provided that the determinant of the coefficient matrix doesn't muish, the system of liver equations is solved by

$$
x=\frac{\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}, y=\frac{\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}
$$

