We compute the honsity of states for a quantum particle in a 3D box with periodic boundary conditions.

We previously derived that the energy of this state is given by

$$\frac{E = \frac{h^2 \tilde{k}^2}{2^{M}} = \frac{h^2}{2^{M}} \left[\left(\frac{2\pi m_2}{L} \right)^2 + \left(\frac{2\pi m_1}{L} \right)^2 + \left(\frac{2\pi m_2}{L} \right)^2 \right],$$
where \tilde{k} is the wavevector for the state $\mathcal{M} = \mathcal{M}_{T}$ exp($(\tilde{k} \cdot \tilde{x})$, and $m_i \in \mathbb{Z}$
is a discretization forced on the wave veders due to periodic beardary enablitions.
The density of states is defined to be the number of energy eigendates between
 $\tilde{k} = \frac{2\pi^2 h^2}{mL^2} n^2$,
the region between E and $E + dE$ in m -space will form a spherical state
containing $4\pi n(E)^2 h(E)$ points. From our exposition above, where
 $n^2 = mh^2 E$, $dE = 4\pi^2 h^2 n dn$
 $2\pi^2 h^2$, mL^2

$$\frac{4\pi n^{2} dn = 4\pi \cdot mL^{2}E}{2\pi^{2}h^{2}} \cdot mL^{2} dE \left(\frac{1}{4\pi^{4}}h^{4}}{m\chi^{4}E}\right)^{1/2} = \frac{mL^{2}h^{2}}{4\pi^{4}} \left(\frac{1}{4\pi^{4}}h^{4}}{m\chi^{4}E}\right)^{1/2} = \frac{m^{3/2}L^{3}}{\sqrt{E}} \int E dE = \frac{m^{3/2}V}{\sqrt{E}} \int E dE = \int (E) dE = \int (E) dE$$

$$\int 2\pi^{2}h^{3}} \int E dE = \frac{\sqrt{2}}{\sqrt{2}\pi^{2}h^{3}} \int E dE = \int (E) dE$$