Evolution of Two Point Particles Under Coulomb Force in 1D

Matt Kafker

Exercise:

We derive the equation of motion governing the evolution of two point particles interacting via the
Coulomb force in one dimension.

Solution:

Suppose we have two point particles with masses m; and msy, charges ¢; and g2, and positions z;
and xo which interact only via the Coulomb force. The energy of this system is given by
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If these quantities are given in the center-of-mass frame, we have
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Substituting into the equation for energy conservation, we have
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Now, define = x1 — x5. It follows that
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where p is the reduced mass. Solving for &, we derive our equation of motion,
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Note that we may always define 1 > x5 and so we drop the absolute value. To solve this differential
equation, we compute F at t = 0, and use the initial condition #(0) = #1(0) — #2(0).

From this point, there are two ways to proceed. This differential equation can be solved numeri-
cally, yielding an approximate trajectory x(t). Alternatively, we can solve the differential equation
analytically using Mathematica, and we get
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where a(z) = E — %. This expression cannot be inverted analytically to get x(t), but it may be
numerically inverted at a finite list of x values, and in that way a discretized but exact trajectory
can be reconstructed.



