Evolution of Two Point Particles Under Coulomb Force in 1D

Matt Kafker

Exercise:

We derive the equation of motion governing the evolution of two point particles interacting via the Coulomb force in one dimension.

Solution:

Suppose we have two point particles with masses m_{1} and m_{2}, charges q_{1} and q_{2}, and positions x_{1} and x_{2} which interact only via the Coulomb force. The energy of this system is given by

$$
E=\frac{1}{2} m_{1} \dot{x}_{1}^{2}+\frac{1}{2} m_{2} \dot{x}_{2}^{2}+\frac{k q_{1} q_{2}}{\left|x_{1}-x_{2}\right|} .
$$

If these quantities are given in the center-of-mass frame, we have

$$
\dot{x}_{\mathrm{COM}}=0=\frac{m_{1} \dot{x}_{1}+m_{2} \dot{x}_{2}}{m 1+m 2} \Longrightarrow \dot{x}_{1}=-\frac{m_{2}}{m_{1}} \dot{x}_{2}
$$

Substituting into the equation for energy conservation, we have

$$
E=\frac{1}{2} m_{1}\left(-\frac{m_{2}}{m_{1}} \dot{x}_{2}\right)^{2}+\frac{1}{2} m_{2} \dot{x}_{2}^{2}+\frac{k q_{1} q_{2}}{\left|x_{1}-x_{2}\right|}=\frac{1}{2} m_{2}\left(1+\frac{m_{2}}{m_{1}}\right) \dot{x}_{2}^{2}+\frac{k q_{1} q_{2}}{\left|x_{1}-x_{2}\right|} .
$$

Now, define $x \equiv x_{1}-x_{2}$. It follows that

$$
\begin{gathered}
\dot{x}=\dot{x}_{1}-\dot{x}_{2}=-\frac{m_{2}}{m_{1}} \dot{x}_{2}-\dot{x}_{2}=-\left(1+\frac{m_{2}}{m_{1}}\right) \dot{x}_{2} \Longrightarrow \dot{x}^{2}=\left(1+\frac{m_{2}}{m_{1}}\right)^{2} \dot{x}_{2}^{2} \Longrightarrow \\
E=\frac{1}{2}\left(\frac{m_{2}}{1+\frac{m_{2}}{m_{1}}}\right) \dot{x}^{2}+\frac{k q_{1} q_{2}}{|x|}=\frac{1}{2}\left(\frac{m_{1} m_{2}}{m_{1}+m_{2}}\right) \dot{x}^{2}+\frac{k q_{1} q_{2}}{|x|} \equiv \frac{1}{2} \mu \dot{x}^{2}+\frac{k q_{1} q_{2}}{|x|},
\end{gathered}
$$

where μ is the reduced mass. Solving for \dot{x}, we derive our equation of motion,

$$
\dot{x}=\sqrt{\frac{2}{\mu}\left(E-\frac{k q_{1} q_{2}}{x}\right)} .
$$

Note that we may always define $x_{1}>x_{2}$ and so we drop the absolute value. To solve this differential equation, we compute E at $t=0$, and use the initial condition $\dot{x}(0)=\dot{x}_{1}(0)-\dot{x}_{2}(0)$.

From this point, there are two ways to proceed. This differential equation can be solved numerically, yielding an approximate trajectory $x(t)$. Alternatively, we can solve the differential equation analytically using Mathematica, and we get

$$
\begin{gathered}
\frac{d x}{d t}=f(x) \Longrightarrow \int d t=\int \frac{d x}{f(x)} \Longrightarrow \\
t(x)+C=\frac{\sqrt{E}\left(x E-k q_{1} q_{2}\right)+k q_{1} q_{2} \sqrt{E-\frac{k q_{1} q_{2}}{x}} \tanh ^{-1}\left(\frac{\sqrt{E-\frac{k q_{1} q_{2}}{x}}}{\sqrt{E}}\right)}{\sqrt{2} E^{3 / 2} \sqrt{\frac{x E-k q_{1} q_{2}}{\mu x}}} \equiv \\
\frac{\sqrt{E} x \alpha(x)+k q_{1} q_{2} \sqrt{\alpha(x)} \tanh ^{-1} \sqrt{\frac{\alpha(x)}{E}}}{\sqrt{\frac{2}{\mu}} E^{3 / 2} \sqrt{\alpha(x)}}=\sqrt{\frac{\mu}{2}}\left(\frac{x \sqrt{\alpha(x)}}{E}+\frac{k q_{1} q_{2}}{E^{3 / 2}} \tanh ^{-1} \sqrt{\frac{\alpha(x)}{E}}\right) \Longrightarrow \\
t(x)+C=\sqrt{\frac{\mu}{2 E}}\left(x \sqrt{\frac{\alpha(x)}{E}}+\frac{k q_{1} q_{2}}{E} \tanh ^{-1} \sqrt{\frac{\alpha(x)}{E}}\right),
\end{gathered}
$$

where $\alpha(x) \equiv E-\frac{k q_{1} q_{2}}{x}$. This expression cannot be inverted analytically to get $x(t)$, but it may be numerically inverted at a finite list of x values, and in that way a discretized but exact trajectory can be reconstructed.

