Fourier's Trick

Matt Kafker

Exercise:

We derive Fourier's trick.

Solution:

We suppose we have a complete, orthonormal set of functions, $\left\{\psi_{n}(x)\right\}_{n}$. As the functions are complete, we can expand an arbitrary function $f(x)$ in this basis:

$$
f(x)=\sum_{n} c_{n} \psi_{n}(x)
$$

We now solve for the coefficients c_{n}.
We take the inner product with a particular state $\psi_{m}(x)$:

$$
\begin{gathered}
\left\langle\psi_{m} \mid f\right\rangle=\int \psi_{m}^{*}(x) f(x) d x=\int \psi_{m}^{*}(x) \sum_{n} c_{n} \psi_{n}(x) d x=\sum_{n} c_{n} \int \psi_{m}^{*}(x) \psi_{n}(x) d x= \\
\sum_{n} c_{n} \delta_{n m}=c_{m} \Longrightarrow c_{n}=\left\langle\psi_{n} \mid f\right\rangle=\int \psi_{n}^{*}(x) f(x) d x
\end{gathered}
$$

