Exercise: We show that gaps between successive prives can be arbitrarily
large.
(Source: Terry Tao - Small and Large Gaps Between the Prives)
Proof
Let
$$N \in \mathbb{Z}_{>1}$$
. Let $\Xi_i = N! + i$, for $i \in \{2, ..., n\}$.
For all $i \in \{2, ..., n\}$, $N! = 2 \cdot 3 \cdot ... (i-1) \cdot i \cdot (i+1) \cdot ... n$.
Thus, each Ξ_i is composite, so we can write it
 $\Xi_i = i \left(\frac{N!}{i} + 1\right) \in \mathbb{Z}$.
Us have therefore shown that, for arbitrary N , we can construct
a sequence of consecutive composite numbers of length $N-1$, $\xi \equiv i \xi_{i}$.
By considering arbitrarily large N , We can therefore construct arbitrarily
large gaps between prives.