First, we derive the formula for the partial sum

$$
s_{n}=\sum_{j=0}^{n-1} x^{j}
$$

We consider $S_{n}-x S_{n}=S_{n}(1-x)=1-x^{n}$, when th final equality can be seen from vising the definition of x..
It follows that

$$
\begin{aligned}
& S_{n}=\frac{1-x^{n}}{1-x} \\
& \operatorname{Tin}_{\text {, }} f|x|<\left\lvert\,, \sum_{j=0}^{\infty} x^{j}=\lim _{n \rightarrow \infty} \frac{1-x^{n}}{1-x}=\frac{1}{1-x}\right.
\end{aligned}
$$

