We derive the maximum likelihood estimator for the temperature for the Maxwell-Boltzmann speed
distribution in d-dimensions.

The Maxwell-Boltzmann speed distribution in d dimensions is given by
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where v = kpT/m. We compute the maximum likelihood estimator for .

Suppose we have n data points {v; }?"_; sampled 7.i.d. from pg(v). The likelihood of the dataset is
given by

pd(vh 7U7L|7) = ]:[pd(vlh/)v
=1

and therefore the log-likelihood is given by
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We now differentiate this expression with respect to v to find the maximum likelihood estimate:
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Recalling the definition -y, we conclude that the MLE estimate for the temperature according to the
Maxwell-Boltzmann speed distribution is simply the empirical approximation of the equipartition

theorem for a free particle in d-dimensions, d - % = %m<’02>.



