We parve that the single-paride wavefuctions in the slater determinant musil be livery indepodent.

Let $\left\{\Phi_{i}(\vec{x}) \xi_{i=1}^{N}\right.$ be single-parlice warefindions. Then, the Slater determined is given by

$$
\psi\left(\vec{x}_{1}, \ldots, \dot{x}_{N}\right)=\frac{1}{\sqrt{N!}}\left|\begin{array}{ccc}
\phi_{1}\left(\vec{x}_{1}\right) & \cdots & \phi_{N}\left(\vec{x}_{1}\right) \\
\vdots & \vdots \\
\phi_{1}\left(\vec{x}_{N}\right) & \cdots & \phi_{N}\left(\vec{x}_{N}\right)
\end{array}\right|
$$

Suppose that $\left\{\phi_{i}(\dot{x})\right\}$ are linearly dependent. Then, there exists coefficients a_{1}, \ldots, a_{N}, not all zero, such that

$$
a_{1} \phi_{1}(\vec{x})+\cdots+a_{N} \phi_{N}(\vec{x}) \neq 0 .
$$

Let a_{j} be the first such non-zero coefficient. Then,

$$
\begin{aligned}
& \phi_{j}(\vec{x})=-\frac{a_{1}}{a_{j}} \phi_{1}(\bar{x}) \cdots-\frac{a_{j-1}}{a_{j}} \phi_{j-1}(\vec{x})- \\
& -\frac{a_{j+1}}{a_{j}} \phi_{j+1}(\vec{x})-\cdots-\frac{a_{N}}{a_{j}} \phi_{N}(\vec{x}) .
\end{aligned}
$$

For comped shorthand, let $b_{i} \equiv-\frac{a_{i}}{a_{j}}, b_{j}=0$. Then,

$$
\phi_{j}(\vec{x})=\sum_{i} b_{i} \phi_{i}(\vec{x}) .
$$

Sustitioling info our slater determinant, ne have

$$
\psi=\frac{1}{\sqrt{N!}}\left|\begin{array}{ccccc}
\phi_{1}\left(\vec{x}_{1}\right) & \cdots & \sum_{i} b_{i} \phi_{i}\left(\vec{x}_{1}\right) & \cdots & \phi_{N}\left(\stackrel{\rightharpoonup}{x}_{1}\right) \\
\vdots & & & & \vdots \\
\vdots & & & \\
\phi_{1}\left(\bar{x}_{N}\right) \cdots & \sum_{i} b_{i} \phi_{i}\left(\stackrel{x}{x}_{N}\right) & \cdots & \phi_{N}\left(\vec{x}_{N}\right)
\end{array}\right|
$$

Next, we use the following lemma.
Lemma:
The determinant of a matrix is unchanged when a scalar multiple of one colum is added to another.

Proof
We consider a matrix $A=\left(\vec{a}_{1} \cdots \vec{a}_{j} \cdots \vec{a}_{k} \cdots \vec{a}_{N}\right)$.
The determinant is mullilivear in its columns, meaning

$$
\begin{aligned}
& \left|\stackrel{\rightharpoonup}{a}_{1} \cdots \stackrel{\rightharpoonup}{a}_{j}+\lambda \dot{a}_{k} \cdots \dot{a}_{k} \cdots \stackrel{\rightharpoonup}{a}_{N}\right|=\left|\stackrel{\rightharpoonup}{a}_{1} \cdots \dot{a}_{j} \cdots \dot{a}_{k} \cdots \vec{a}_{N}\right|+ \\
& \lambda\left|\dot{a}_{1} \cdots \dot{a}_{k} \cdots \dot{a}_{k} \cdots \vec{a}_{N}\right|=\left|\stackrel{a}{a}_{1} \cdots \dot{a}_{j} \cdots \dot{a}_{k} \cdots \vec{a}_{N}\right| .
\end{aligned}
$$

The final equality follows from the fact that the detemineal is abs annisymmelic upon interchange of any tho columns, implying that

$$
\left|\stackrel{\rightharpoonup}{a}_{1} \cdots \vec{a}_{k} \cdots \vec{a}_{k} \cdots \vec{a}_{N}\right|=-\left|\vec{a}_{1} \cdots \vec{a}_{k} \cdots \vec{a}_{k} \cdots \vec{a}_{N}\right|=0
$$

From this lemma, if follows thad

$$
\psi=\frac{1}{\sqrt{N!}}\left|\begin{array}{ccccc}
\phi_{1}\left(\dot{x}_{1}\right) & \cdots & \sum_{i} b_{i} \phi_{i}\left(\dot{x}_{1}\right) & \cdots & \phi_{N}\left(\vec{x}_{1}\right) \\
\vdots & & & & \vdots \\
\vdots & & & \vdots \\
\phi_{1}\left(\bar{x}_{N}\right) & \cdots & \sum_{i} b_{i} \phi_{i}\left(\vec{x}_{N}\right) & \cdots & \phi_{N}\left(\dot{x}_{N}\right)
\end{array}\right|=
$$

$$
\begin{aligned}
& \frac{1}{\sqrt{N!}}\left|\begin{array}{ccccc}
\phi_{1}\left(\dot{x}_{1}\right) & \cdots & \sum_{i} b_{i} \phi_{i}\left(\vec{x}_{1}\right)-\sum_{i} b_{i} \phi_{i}\left(\bar{x}_{1}\right) & \cdots & \phi_{N}\left(\vec{x}_{1}\right) \\
\vdots & \cdots & & \\
1 & & & \\
\phi_{1}\left(\bar{x}_{N}\right) \cdots & \sum_{i} b_{i} \phi_{i}\left(\vec{x}_{N}\right)-\sum_{i} b_{i} \phi_{i}\left(\stackrel{x}{x}_{N}\right) & \cdots & \phi_{N}\left(\vec{x}_{N}\right)
\end{array}\right|= \\
& \left.\frac{1}{\sqrt{N!}}\left|\begin{array}{cccc}
\phi_{1}\left(\dot{x}_{1}\right) & \cdots & 0 & \cdots \\
\vdots & & \phi_{N}\left(\vec{x}_{1}\right) \\
\phi_{1}\left(\dot{x}_{N}\right) & \cdots & 0 & \cdots
\end{array}\right|=\phi_{N}\left(\dot{x}_{N}\right) \right\rvert\,=0,
\end{aligned}
$$

where the final equality comes from the cofador expansion of the determinant, summing down the $j^{\text {th }}$ column.

Therefore, we have shown that if the singhe-particde wavefunctions are linearly dependant, $\Psi=0$. Clearly, this is not normalizable, and hence not a physical state, and we conduce that the single-particle wavelunciaus must be linearly independent.
(As asimpte corollary, the linear independence of the $\phi_{i}(\vec{x})$ implies that ie can choose them to be orthonormal using the 6ram-Schmidt process.)

