1.11

We derive Smells law using the principle of least time.
We wish to firltike tmizeding which minimizizes theine to go from $\left(x_{1}, y_{1}\right)$ to $\left(x_{1}, y_{2}\right)$ where then are tho regions with tho different indices of refraction:

Theine can be expressed as on integral

$$
T=\int_{\left(x_{1}, y_{0}\right)}^{\left(x_{1}, y_{2}\right)} \frac{d s}{v}=\frac{n_{1}}{c} \int_{\left(x_{1}, y_{0}\right)}^{\left(x_{0}\right)} d s+\frac{n_{2}}{c} \int_{\left(x_{0}, 0\right)}^{\left(x_{1}, y_{2}\right)} d s
$$

We also recall that $V=c / n$.
We first prove that the teast-live tmojedory in either medium is straight line.
Let $f_{1}(x)$ bethe currethal tiv partick follows from (x, y, y) to $(x, 0)$, such that $f_{1}\left(x_{1}\right)=y_{1}, f_{1}\left(x^{*}\right)=0$

$$
\begin{aligned}
& T\left[f_{1}\right]=\frac{n_{1}}{c} \int_{\left(x_{1}, y_{1}\right)}^{\left(x_{0}\right)} d s\left(f_{1}\right)=\frac{n_{1}}{c} \int_{x_{1}}^{x^{*}} \sqrt{1+\int_{1}^{\prime}\left(x^{2}\right)^{2}} d x{ }^{\prime} \Rightarrow \\
& \frac{\delta T}{\delta f_{1}(x)}=\frac{-d}{d x} \cdot \frac{C_{1}^{\prime}(x)}{\sqrt{1 r f_{1}^{\prime}(x)^{2}}}=0 \Rightarrow \frac{\int_{1}^{\prime}(x)}{\sqrt{+C_{1}^{\prime}(x)^{2}}}=\text { const } \equiv k \\
& \Rightarrow\left[f_{1}^{\prime}(x)\right]^{2}=k^{2}\left(1+C_{1}^{\prime}(x)\right)^{2}=k^{2}+k^{2} f_{1}^{\prime}(x)^{2} \Rightarrow \\
& f_{1}^{\prime}(x)^{2}\left(1-k^{2}\right)=k^{2} \Rightarrow C_{1}^{\prime}(x)=\sqrt{\frac{k^{2}}{1-k^{2}}}=\text { constand. }
\end{aligned}
$$

Thus $f_{1}^{\prime}(x)=$ const $\Rightarrow C_{1}(x)$ isa slaighlline!
The save argueat impties thal $f_{2}(x)$ is a slnaigt live.
We are now in a position to derive Snell's law. We wish to dotermire Meposition of x^{*} which minimizes the light's travel time.

The live the light will travel issow given ty

$$
T=\frac{n_{1}}{c} \sqrt{\left(x_{1}-x^{*}\right)^{2}+y_{1}^{2}}+\frac{n_{2}}{c} \sqrt{\left(x_{2}-x^{*}\right)^{2}+y_{2}^{2}}
$$

We food the minimum line ty differaliation with roped to x^{*} :

$$
\begin{aligned}
& \frac{d T}{d x^{*}}=0=\frac{n_{1}}{c} \cdot \frac{-\left(x_{1}-x^{*}\right)}{\sqrt{\left(x_{1}-x^{*}\right)^{2}+y_{1}^{2}}}+\frac{n_{2}}{c} \frac{-\left(x_{2}-x^{*}\right)}{\sqrt{\left(x_{1}-x^{*}\right)^{2}+y_{2}^{2}}} \Rightarrow \\
& \frac{n_{1}\left(x^{*}-x_{1}\right)}{\sqrt{\left(x_{1}-x^{*}\right)^{2}+y_{1}^{2}}}=\frac{n_{2}\left(x_{2}-x^{*}\right)}{\sqrt{\left(x_{2}-x^{*}\right)^{2}+y_{2}^{2}}}
\end{aligned}
$$

Hoverever, we can see from the diagram that this expression is equivalent to

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

This is Snell's law.

