We stow that solutions to the Dirac equation

$$
(i \nexists-m) \Psi=0
$$

satisfy the hlein-Govdor equation.
It follows fourth Dirac equation that

$$
\begin{aligned}
& \left(i \gamma_{+}+m\right)\left(i \partial_{-m}\right) \Psi=0=\left(-\partial_{\mu} \gamma^{\mu} \partial_{\nu} \gamma^{\nu}+i \gamma_{m}-i \partial_{m}\right. \\
& \left.-m^{2}\right) \Psi=\left(-\frac{1}{2} \partial_{\mu} \partial_{\nu}\left(\left\{\gamma^{\mu}, \gamma^{\nu}\right\}+\left[\gamma^{\mu}, \gamma^{\nu}\right]\right)-m^{2}\right) \Psi .
\end{aligned}
$$

$\partial_{x} \partial \nu\left[\gamma^{\mu}, \gamma^{\nu}\right]=0$ sine $\partial_{\mu} \partial_{0}$ is symmetric anticomomadars anliydodix.
Since $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 r^{\mu \nu}$, we are left with

$$
\left(-\eta^{\mu \nu} \partial_{\mu} \partial_{\nu}-m^{2}\right) \Psi=\left(-\partial_{\mu} \partial^{\mu}-m^{2}\right) \Psi=0
$$

which ne recognize astle ktein-Gordan equation.

