We derive the formula for line dilation.
We consider two observers, A and B. A is attest and Bismoving lothe right with sore speed V.

A is carrying alight clock, which tracks line by massuriy the duration elapsed for alight pulse to havel back ard forth between the minors, which are separated by a distance L/A.

A measures one such duration to be $\Delta t=L / C$. To B, Alas traveled $-v \Delta t^{\prime}$, so B determines that ore "lick" lasts

$$
\begin{aligned}
& \Delta t^{\prime}=\frac{2}{c} \sqrt{\frac{v^{2} \Delta t^{\prime 2}}{4}+\frac{L^{2}}{4}}=\sqrt{\frac{v^{2}}{c^{2}}\left(\Delta t^{\prime}\right)^{2}+\frac{L^{2}}{c^{2}}} \Rightarrow \\
& \left(\Delta t^{\prime}\right)^{2}\left(1-v^{2} / c^{2}\right)=L^{2} / c^{2} \Rightarrow \\
& \Delta t^{\prime}=\frac{L / c}{\sqrt{1-v^{2} / c^{2}}}=\frac{\Delta t}{\sqrt{1-v^{2} / c^{2}}} \equiv \gamma \Delta t \Rightarrow \Delta t^{\prime}=\gamma \Delta t
\end{aligned}
$$

(where we have used the fact flat all observers measure c to beidenical.)
This is the line dilation formula. B measures one "lick" tolast longer Ian A does by a factor of X.

Now, suppose that B is carrying an extended object of tenth λ^{\prime} (measure withe outer inkle rest frame of B). A measures the object as il goes past by limingth duration between whenitk rant end passes and the back end passes. This takes lime T, so the objed haslength $\lambda=c T=c T^{\prime} / \varnothing=\lambda / \varnothing$.

$$
\lambda=\lambda^{\prime} / \gamma
$$

This is the leyglle contraction formula, which says lith the object will appear contracted in A realize to howit appears to B.

