We consider two observers, A and B. A is at rest and Bisnoving latte right with some speed V.

A is carrying a light clock, which tracks line by measuring the duration elapsed for a light pulse to travel back and forth between the mirrors, which are separated by a distance L/2.

A measures one such duration to be $\Delta t = L/c$. To B, Alas travelled $-V\Delta t'$, so B determines that one "tick" lasts

$$\Delta t' = \frac{2}{c} \int \frac{v^2 \Delta t'^2}{4} + \frac{L^2}{4} = \int \frac{v^2}{c^2} (\Delta t')^2 + \frac{L^2}{c^2} =$$

$$\Delta t' = \frac{L/c}{\sqrt{1-v^2/c^2}} = \frac{\Delta t}{\sqrt{1-v^2/c^2}} = 8\Delta t \Rightarrow \Delta t' = 8\Delta t$$

(where we have used the fact that all observers measure c to be identical
This is the line dilation formula. B measures one "lick" to last longer Han A does by a fador of X.
does by a lador of 8.
Now, suppose that B is carrying an extended object of length & measure
with a ruler in the rest frame of B). A measures the object as it goes past by
Now, suppose that B is carrying an extended object of length λ (neason with a ruler inthe rest frame of B). A measures the object as it goes past by liming the Irration between whenthe front end passes and the back end passes. This takes line T, solk object has length $\lambda = cT = cT/8 = \lambda/8$
$\lambda = \lambda'/\gamma$
This is the length contraction formula, which says that the object will appear contracted in A relative to Low it appears to B.
contracted in A relative to Lowit-ppears to B.