Template

Matt Kafker

Exercise:

We derive the time independent Schrödinger equation.

Solution:

Consider the time-dependent Schrödinger equation with a potential $V(x)$ that does not depend on time,

$$
i \hbar \dot{\Psi}=-\frac{\hbar^{2}}{2 m} \Psi_{x x}+V \Psi
$$

Consider product solutions of the form $\Psi(x, t)=\psi(x) \phi(t)$. Plugging in, we have

$$
i \hbar \psi \dot{\phi}=-\frac{\hbar^{2}}{2 m} \psi_{x x} \phi+V \psi \phi \Longrightarrow i \hbar \frac{\dot{\phi}}{\phi}=-\frac{\hbar^{2}}{2 m} \frac{\psi_{x x}}{\psi}+V
$$

Now, the right hand side depends only on x and the left hand side depends only on t, which can only happen if each is constant. Call the constant of separation "E." Then, we have

$$
i \hbar \phi \dot{(} t)=E \phi(t)
$$

$$
-\frac{\hbar^{2}}{2 m} \psi_{x x}(x)+V(x) \psi(x)=E \psi(x)
$$

The first equation determines the time-dependent phase of the product solution, and the second equation is the time-independent Schrödinger equation.

