Wave Function Overlaps Are Preserved by Schrödinger Evolution

Matt Kafker

Exercise:

We show that the Schrödinger equation preserves the overlap between two wave functions in time.

Solution:

$$
\begin{gathered}
\frac{d}{d t} \int_{-\infty}^{\infty} \Psi_{1}^{*} \Psi_{2} d x=\int_{-\infty}^{\infty}\left(\dot{\Psi}_{1}^{*} \Psi_{2}+\Psi_{1}^{*} \dot{\Psi}_{2}\right) d x= \\
\int_{-\infty}^{\infty} \frac{i}{\hbar}\left[-\frac{\hbar^{2}}{2 m} \Psi_{1, x x}^{*} \Psi_{2}+V \Psi_{1}^{*} \Psi_{2}-\left(-\frac{\hbar^{2}}{2 m} \Psi_{1}^{*} \Psi_{2, x x}+V \Psi_{1}^{*} \Psi_{2}\right)\right] d x= \\
-\frac{i \hbar}{2 m} \int_{-\infty}^{\infty}\left(\Psi_{1, x x}^{*} \Psi_{2}-\Psi_{1}^{*} \Psi_{2, x x}\right) d x=0
\end{gathered}
$$

The final equality can be obtained by integrating one of the terms by parts twice.
Of course, this implies that states which are initially orthogonal remain orthogonal under timeevolution.

