Let A be an NXN matrix. We prove that
$$dct(A) = det(A^{T})$$
.
Proof
We recall the recursive definition of the dolerminant:
IF the cultries of A are denoted Aig, then
 $dot A = \sum_{i} (-1)^{i+j} A_{ij} det M_{ij} = \sum_{j} (-1)^{i+j} A_{ij} det M_{ij}^{j}$
where M_{ij} is the matrix A with the ith row and jth column
removed.
We now prove the desired result inductively.
Base case: $N=d$
 $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \Longrightarrow dct A = A_{11}A_{22} - A_{12}A_{21}$
 II
 $A^{T} = \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix} \Longrightarrow dct A^{T} = A_{11}A_{12} - A_{21}A_{12}$
Inductive thypothesis: Suppose det B = det B^T for all (N-1)x(N-1)

natrices.

let Nij be AT with the ith row and ith column removed. $A^{T} = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{N1} \\ A_{12} & A_{22} & \cdots & A_{N2} \\ \vdots & \vdots & \vdots & \vdots \\ A_{NN} & A_{NN} & \cdots & A_{NN} \end{pmatrix}$ Summing down the first column, we have $A^{T} = \sum_{i=1}^{N} A_{ij} (-1)^{i+j} det N_{ij}$ $\sum_{i=1}^{N} A_{ii} (-1)^{i+j} dct M_{ji}$ $\sum_{j=1}^{N} A_{ij} (-1)^{i+j} dct(M^{T})_{ij} =$ $\sum_{j=1}^{m} A_{ij} (-1)^{ij} def M_{ij} = def A$

Where the final equality can be under stood by realizing that the previous expression is the recursive definition of the doterminant of A if it is computed by summing across the first row:

A A21 A22 -- A2N